DECISION AID METHODOLOGIES IN TRANSPORTATION Lecture 5: Maritime transportation problem

Chen Jiang Hang

Transport and Mobility Laboratory

May 19, 2014

Maritime transport

Shipping and maritime transport

- Major transportation mode of international trade
- Three modes of operations:
 - Industrial shipping: the cargo owner also owns the ship
 - Tramp shipping: operates on demand to transfer cargo
 - Uner shipping: operates on a published schedule and a fixed port rotation
- Ships carry different type of freight:
 - Solid bulk
 - 2 Liquid bulk
 - Containers

Optimization problems in maritime shipping

- Design of optimal fleets in size and mix
- Ship routing (sequence of ports)
- Ship scheduling (temporal aspects)
- Fleet deployment (assignment of vessels to routes)

Containerized trade

- Containerized trade accounts for 25% of total dry cargo (UNCTAD, 2008)
- Annual growth rate: 9.5% between 2000 and 2008

Container terminal ranking

RANK	PORT	2010	2011
		(M-TEU)	(M-TEU)
1	Shanghai, China	29.07	31.74
2	Singapore, Singapore	28.43	29.94
3	Hong Kong, China	23.7	24.38
4	Shenzhen, China	22.51	22.57
5	Busan, South Korea	14.18	16.17
6	Ningbo-Zhoushan, China	13.14	14.72
7	Guangzhou Harbor, China	12.55	14.26
8	Qingdao, China	12.01	13.02
9	Dubai, United Arab Emirates	11.6	13.01
10	Rotterdam, Netherlands	11.14	11.88

Container terminal layout

Operations in container terminals

- → Discharging container flow
- --> Loading container flow

Quayside

Berth Allocation Problem (BAP)

berth 1

2

Quay Crane Assignment Problem (QCAP)

Quay Crane Scheduling Problem (QCSP)

Yardside

Yard operations

- **Yard/block allocation problem**: Assign a block in the yard to groups of unloaded containers
- Storage space allocation problem: Assign a slot within the block to every container
- Yard crane allocation and scheduling problem:
 - Assign yard crane to yard blocks
 - Schedule their movement and their workload

Transfer operations

- From quay to yard/ from yard to gate
- $\textcircled{O} \ \ \mathsf{Fleet} \ \ \mathsf{management}/ \ \ \mathsf{scheduling} \ \ \mathsf{of} \ \ \mathsf{trucks} \ \ \mathsf{and} \ \ \mathsf{AGV}$

Berth allocation problem

The BAP can be depicted in a Time-space Diagram.

Berth allocation problem

Parameters:

- $\bullet~S,$ the length of the continuous berth
- T, the length of the planning horizon
- n, the number of vessels, n = |V|
- p_i , the processing time for Vessel $i, i \in V$
- s_i , the size of Vessel $i, i \in V$
- a_i , the arrival time of Vessel $i, i \in V$
- w_i , the weight assigned for Vessel $i, i \in V$

Decision Variables:

- u_i , the mooring time of Vessel $i, i \in V$
- v_i , the starting berth position occupied by Vessel $i, i \in V$
- c_i , the departure time of Vessel $i, i \in V$
- $x_{ij} \in \{0,1\}$, 1 if and only if Vessel i is completely on the left of Vessel j in the Time-space Diagram
- $y_{ij} \in \{0,1\}$, 1 if and only if Vessel i is completely below Vessel j in the Time-space Diagram

Berth allocation problem

$$\begin{array}{ll} \min & \sum_{i \in V} w_i(c_i - a_i) \\ \text{s.t.} & \\ & u_j - u_i - p_i - (x_{ij} - 1) \cdot T \ge 0, \qquad \forall i, j \in V, i \ne j \\ & v_j - v_i - s_i - (y_{ij} - 1) \cdot S \ge 0, \qquad \forall i, j \in V, i \ne j \\ & x_{ij} + x_{ji} + y_{ij} + y_{ji} \ge 1, \qquad \forall i, j \in V, i \ne j \\ & x_{ij} + x_{ji} \le 1, \qquad \forall i, j \in V, i \ne j \\ & y_{ij} + y_{ji} \le 1, \qquad \forall i, j \in V, i \ne j \\ & p_i + u_i = c_i, \qquad \forall i \in V \\ & a_i \le u_i \le (T - p_i), 0 \le v_i \le (S - s_i), u_i, v_i \in \Re^+ \quad \forall i \in V \\ & x_{ij} \in \{0, 1\}, y_{ij} \in \{0, 1\}, \qquad \forall i, j \in V, i \ne j \end{array}$$

An illustrative example:

QC 1: 1, 3; QC 2: 2, 4.

An illustrative example:

QC 1: 1, 3; QC 2: 2, 4.

An illustrative example:

QC 1: 1, 3; QC 2: 2, 4.

An illustrative example:

QC 1: 1, 3;QC 2: 2, 4.

Vessel 0 0 1 1Bay 1 Bay 2 Bay 3 Bay 4

An illustrative example:

QC 1: 1, 3; QC 2: 2, 4.

Quay crane scheduling

Parameters:

- *i*, *j*: the index for ship bay
- k, l: the index for QC;
- *m*: the number of QCs;
- n: the number of bays;
- p_i : the workload of Bay i $(1 \le i \le n)$;
- M: a sufficiently large positive constant number.

Decision variables:

- C_{\max} : the makespan for the berthed vessel;
- C_i : the completion time of Bay $i (1 \le i \le n)$;
- X_{ik} : 1, if Bay *i* is handled by QC *k*; 0, otherwise $(1 \le i \le n)$;
- Y_{ij}: 1, if Bay i completes no later than Bay j starts; 0, otherwise (1 ≤ i ≤ n).

$$\begin{array}{ll} \min & C_{\max} \\ s.t. \\ & C_{\max} \geq C_i, \quad \forall 1 \leq i \leq n \\ & C_i - p_i \geq 0 \quad \forall 1 \leq i \leq n \\ & \sum_{k=1}^m X_{ik} = 1 \quad \forall 1 \leq i \leq n \\ & C_i - (C_j - p_j) + MY_{ij} \geq 0 \quad \forall 1 \leq i, j \leq n \\ & (C_j - p_j) + M(1 - Y_{ij}) - C_i \geq 0 \quad \forall 1 \leq i, j \leq n \\ & M(Y_{ij} + Y_{ji}) \geq \sum_{k=1}^m k X_{ik} - \sum_{l=1}^m l X_{jl} + 1 \quad \forall 1 \leq i < j \leq n \\ & X_{ik}, Y_{ij} \in \{0, 1\} \quad \forall 1 \leq i, j \leq n, \forall 1 \leq k \leq m \\ & C_{\max}, C_i \in \Re^+ \quad \forall 1 \leq i \leq n \end{array}$$